

Faserverstärkte Kunststoffbauteile im Crash

DYNAMORE Infotag, Stuttgart, 26.10.2012

Jan SEYFARTH

Product Manager DIGIMAT

e-Xstream engineering

Company & Strategy

e-Xstream Company & Strategy

℃ Who are we...? MSC Software Company!

✓ A team of 24 persons

- 15 PhDs (62.5%)
- 6 MS & BS Engineering (25%)
- 3 Marketing, Finance & Admin (12.5%)
- + 9 TBH in 4Q2012 & 2013
- ✓ Material experts

MSC X Software Compa

- Micromechanics
- ✓ It's all about composites!!!

What challenges do we tackle...?

$\checkmark\,$ In-depth Understanding of the Material

• The microscopic level of composite materials

✓ Material Performance

• "Digimat material models"

✓ Multi-Scale simulations

• Include microstructure effects via Digimat material models

✓ Influence of Processing

- Short fibers: Injection / compression molding
- UD composites: Draping / fiber placement

Wholistic Multi-Scale Modeling!

∞ Digimat User groups

✓ Material Engineers	 Material suppliers Experts (large companies)
 Understand the material properties 	
 Develop new materials 	
 Set up DIGIMAT models 	
 Support structural engineers 	
✓ Structural Engineers	Automotive Aerospace Consumer Electronics
 Focus on structural design 	
 Take into account influence of processing on 	the structural response

• Use sophisticated material models

e-Xstream **Company & Strategy**

𝒴 How do we do all this...?

✓ Digimat – The Nonlinear Multi-Scale Modeling Platform

Aigimat-MF $\langle \Delta \varepsilon \rangle_{i} = B^{c} \langle \Delta \varepsilon \rangle_{i}$

Diaimat-MF

to predict the nonlinear constitutive behavior of multi-phase material.

Digimat-FE

to perform Finite Element modeling of realistic Representative Volume Elements (RVE).

Diaimat-MX

to reverse engineer, store, retrieve and securely exchange DIGIMAT material models.

Digimat-CAE

to interface to all major processing and structural FEA software codes.

Digimat-MAP

to map data between dissimilar meshes.

Micross

to design honeycomb core composite sandwich panels based on FE analyses.

<u>Finite</u> <u>Element</u> Analysis

C In-depth analysis of composite materials

Post: analysis of result file from external FEA solver

RVE settings

🛠 Multi-Materials

- ✓ Metal (Alloys)
 - Aluminium / Magnesium
 - Molybdenum / Titanium / Tungsten

✓ Reinforced Plastics

- Epoxy + Glass / Carbon / Aramid fibers
- ✓ Ceramics
 - Titanium + SiC fibers

Pores

Complex structures

Multi-Physics

✓ Mechanical properties

- Stresses
- Strains

✓ Thermal Conductivity

• Heat flow

Stresses in phases

✓ Electrical Conductivity ▲ Dersolation

• Percolation

MSC Software Company

✓ Interphases & Debonding

Mean Field Homogenization

C Fast & efficient prediction of composite material properties

Solution Fast & efficient prediction of composite material properties

✓ Material focus

	MATERIALS		MICROSTRUCTURE			PROCESSING
	Matrix	Fibers	Inclusion	Orientation	Setup	Technology
Short fibers						
	Thermoplast	Glass (Carbon)	Straight	Random	Skin/core	Injection molding
Long Fibers	Thermoplast Thermoset	Glass Natural	Straight Wavy	Random Bundling	Complex Layers	Injection molding Compression molding
Continuous Fibers	Thermoset (Thermoplast)	Glass Carbon	Straight	Fixed	Stacked	Draping

MSC Software Company

C DIGIMAT Material Models

- ✓ (Thermo-) Elastic
- ✓ (Thermo-) Elastoplastic
- ✓ (Thermo-) Viscoelastic
- ✓ (Thermo-) Elasto-Viscoplastic

MSC Software Company

C DIGIMAT Material Models

© e-Xstream engineering 2012

MSC Software Company

C DIGIMAT Material Models

✓ Failure of SFRP (<u>Short Fiber Reinforced Plastics</u>)

© e-Xstream engineering 2012

Solution Of Contract Material Models

- ✓ Failure of SFRP
 - Pseudo grain level

Solution Fast & efficient prediction of composite material properties

- ✓ Short fiber reinforced plastics & Classical Composites
 - Fatigue
 - S(N) curves *dependent on orientation* of fibers

C Fast & efficient prediction of composite material properties

- ✓ Short fiber reinforced plastics & Classical Composites
 - Fatigue
 - S(N) curves *dependent on amount* of fibers

Digimat-MX

<u>Material eX</u>change Platform

Digimat-MX

Sc Parametrize & eXchange DIGIMAT material models

database

based on experimental data

database and ready to be shared and used

✤ Parametrize & eXchange DIGIMAT material models

✓ Public data

- Ready-to-use DIGIMAT models
- Experimental data for parametrization of DIGIMAT models

Digimat-MX

✤ Parametrize & eXchange DIGIMAT material models

✓ Database

- Public database
 - Contains entries from material suppliers
- Sharing controled by priviliges
 - User/Group

✓ Encryption

- Intellectual property
- Exchange of data between
 - Material suppliers
 - Application engineers

Interfaces to FEA Interfaces to Processing

C Bridge the gap between processing and structural mechanics

C Bridge the gap between processing and structural mechanics

✓ All FEA

MSC Software Company

- Implicit
 - Explicit
 - Marc
- Explicit
- Nastran (SOL700) ^{5.0.1}
- Nastran^{5.0.1} LS-DYNA
- Abaqus Abaqus
- ANSYS Radioss
- LS-DYNA Pamcrash
- SAMCEF

✓ Integration into CAE environment

- Marc Mentat ANSYS WB
- Abaqus CAE Hypermesh

Solution Seridge the gap between processing and structural mechanics

✓ All processes

- Short / long fibers
 - Injection molding
 - Compression molding
 - Injection/compression molding

• UD composites

- Draping
- Fiber placement

• Others

MSC Software Company

– Mucell

MSC Software Company

Short fiber reinforced plastics

- High quality results
- Local response / failure predicted correctly

MSC Software Company

℃ HYBRID Solution → speed-up for explicit simulations

℃ HYBRID Solution → speed-up for explicit simulations

- ✓ CPU time can become critical
 - Change in internal solution procedures
 - Reduction of information exchange to the <u>macroscopic level</u>
 - Usage of homogenization ("Micro") approach in a pre-processing step
 - Reverse engineering to deliver a good approximation to the exact ("Micro") solution
 - Per-phase ("Micro") results skipped
 - Available for
 - Stiffness for E, EP, EVP
 - Failure in 3D

\mathcal{O} HYBRID Solution \rightarrow speed-up for explicit simulations

Solution	Nb. Increment	СРՍ	CPU per increment and per proc	CPU ratio
Micro	24456	207 h 55 min (3 procs)	1,53 min	
Hybrid	29601	26 h 08 min (1 proc)	0,053 min	28,9

Speed-up: 9 days \rightarrow 1 day + 3 variants

MSC X Software Compa

℃ HYBRID Solution → speed-up for explicit simulations

- ✓ DIGIMAT 4.2.1 January 2012
 - 9 days / 3 CPUs \rightarrow 1 day / 1 CPU
 - Good global response
 - Good local results

✓ DIGIMAT 4.3.1 ^{July 2012}

• Up to 50% decrease in memory

✓ DIGIMAT 5.0.1 January 2013

- About 30 50% gain in CPU
- Up to 40% decrease in memory
- Failure fully strain rate dependent

8 hours / 3 CPUs {4.2.1}

35 min. {5.0.1}

OT format	Version	1 Proc
.xml OT file	4.2.1	22 GB
	4.3.1	8 GB
.dof OT file	4.2.1	12 GB
	4.3.1	8 GB

Model size: 1.3 Mio elements

℃ Full vehicle System Level

✓ Acceptable increase of calculation time

- $9 \rightarrow 14$ hours on 32 cores
- Only 8 hours on 64 cores

✓ Loss in efficiency for ISOTROPIC

• On 64 cores

MSC Software Compar

• Overhead of communication

NTT DATA Global IT Innovator

YES – WE CAN...!!!!!

	16 cores	32 cores	64 cores
ISOTROPIC improved	17 h 59 m	9 h 17 m	10 h 0 m
HYBRID default	-	42 h 31 m	-
HYBRID improved	26 h 37 m	14 h 16 m	8 h 15 m
HYBRID optimized	-	12 h 5m	-
MICRO improved	-	152 h 51 m (6.4 days)	-

© e-Xstream engineering 2012

℃ Full vehicle System Level

NTT Data Global IT Innovator

- ✓ Front crash
 - Comparison to isotropic
 - Stress distribution different
 - Failure area different _

Digimat

C Thank you for your attention!

✓ Any questions...?

Product Manager DIGIMAT

e-Xstream engineering (L)

Phone: +49 (0)89 / 306 007 94 Mobile: +49 (0)176 / 70 55 47 59 Skype: eX_JSH

L-4940 Bascharage

Email: jan.seyfarth@e-Xstream.com

LUXEMBOURG

www.e-Xstream.com

Z.I. Bommelscheuer

